Two New Cytotoxic Biphenyls from the Roots of Incarvillea arguta

by Jian-Jun Fu^a), Hui-Zi Jin^a), Yun-Heng Shen^b), Jiang-Jiang Qin^a), Yan Wang^a), Ying Huang^a), Qi Zeng^a), Shi-Kai Yan^a), and Wei-Dong Zhang^{*a})^b)

 ^a) School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P. R. China
^b) Department of Phytochemistry, Second Military Medical University, Shanghai 200433, P. R. China (phone: +86-21-25070386; fax: +86-21-25070386; e-mail: wdzhangy@hotmail.com)

Two novel biphenyls, named incargutines A (1) and B (2), were isolated from the roots of *Incarvillea arguta*, and the structures were elucidated by detailed spectroscopic analysis, including HR-ESI-MS data and 2D-NMR spectroscopy. Compounds 1 and 2 contain an unprecedented C-atom skeleton, namely a 4-methylbiphenyl unit fused with a 7-methylcyclopentane unit at C(2) and C(3) (*i.e.*, a 1,7-dimethyl-4-phenylindane skeleton). The cytotoxicity of 1 and 2 was evaluated with four tumor cell lines, A549, LOVO, CEM, and MDA-MB-435 (MDA), by an MTT assay.

Introduction. – *Incarvillea arguta* (Bignoniaceae) mainly grows in the southwest area of China at an altitude of 1400-2700 m. It has been widely used as a herbal medicine of Yi nationality (known as '*Wabuyou*') to treat hepatitis and diarrhea in China [1]. A number of ceramides, triterpenes, monoterpene alkaloids, and flavones have been reported from *I. arguta* [2–6]. Further investigation of this plant led us to isolate two novel biphenyls **1** and **2** with an unprecedented C₁₇ skeleton of the 4,7-dimethyl-1-phenylcyclopenta[c]benzene type (*i.e.*, of the 1,7-dimethyl-4-phenylindane type). To the best of our knowledge, this is the first example of a biphenyl natural product fused with a cyclopentane moiety at C(2) and C(3). We report on the isolation and structure elucidation of these novel biphenyls through extensive spectroscopic analysis and on their antitumor activities *in vitro*.

Results and Discussion. – The dried roots of *I. arguta* (24.9 kg) were chopped and percolated with 80% EtOH (4×501) at room temperature. The solvent was evaporated to give a crude extract (5.2 kg). The extract was taken up in 151 of H₂O and the resulting suspension acidified to pH 2 with H₂SO₄ solution and filtered. The filtrate was basified to pH 10 with NaHCO₃ solution and then extracted with CHCl₃.

1) Arbitrary atom numbering; for systematic names, see Exper. Part.

© 2009 Verlag Helvetica Chimica Acta AG, Zürich

The CHCl₃ extract (93 g) was separated by column chromatography (silica gel) and prep. HPLC to yield 1 (3.2 mg) and 2 (16.0 mg).

Incargutine A¹) (1) was obtained as a yellow oil. The molecular formula was determined as $C_{17}H_{16}O_2$ by HR-ESI-MS ($m/z \ 251.1074 ([M-H]^-, C_{17}H_{15}O_2^-)$). The ¹³C-NMR and DEPT spectra of 1 showed 19 C-atoms, including one Me, two CH₂, seven CH, and one CHO group, and six quaternary aromatic C-atoms (*Table 1*). There were two sets of mutually coupled H-atoms in the aromatic region of the ¹H-NMR spectrum of 1: the one at $\delta(H)$ 7.69 ($d, J = 7.8 \ Hz$) and 7.24 ($d, J = 7.8 \ Hz$) indicated a 1,2,3,4-tetrasubstituted benzene moiety, and the other one at $\delta(H) \ 7.30 \ (d, J = 8.6 \ Hz, H-C(2'), H-C(6'))$ and 6.92 ($d, J = 8.6 \ Hz, H-C(3'), H-C(5')$) indicated a 1',4'-disubstituted benzene ring. In the HSQC spectrum of 1, the signals at $\delta(H) \ 10.18 \ (s)$ correlated with the signal at $\delta(C) \ 192.5 \ (C(10))$. The CHO group of 1 was located at C(4) due to the HMBC cross-peaks H-C(10)/C(4) and C(5), and H-C(5)/C(4) and C(10) (*Fig. 1*), and the NOESY cross-peak H-C(10)/H-C(5). The analysis of the NOESY data is based on a 3D structure generated by molecular modeling (Chem-Office2006 Chem3D Ultra 10.0) with MM2 force-field calculations for energy minimization (*Fig. 2*).

	1		2	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
C(1)		144.3		138.8
C(2)		131.0		132.2
C(3)		148.4		146.9
C(4)		146.4		141.9
H-C(5)	7.69 (d, J = 7.8)	129.8	7.36 (d, J = 7.8)	124.5
H-C(6)	7.24 (d, J = 7.8)	128.4	7.07 (d, J = 7.8)	127.6
H-C(7)	3.55 - 3.62 (m)	37.8	3.53 - 3.58 (m)	38.2
$CH_2(8)$	2.31 - 2.35(m), 1.77 - 1.80(m)	33.4	2.26 - 2.29 (m), 1.67 - 1.71 (m)	33.3
$CH_{2}(9)$	3.31-3.37 <i>(m)</i>	29.9	2.95 - 2.99(m)	29.3
H - C(10)	10.18(s)	192.5	5.41 (s)	102.7
Me(11)	0.80 (d, J = 7.0)	19.8	0.80 (d, J = 6.9)	19.9
Me(12)			3.37(s)	53.2
Me(13)			3.37(s)	53.2
C(1')		132.9		133.5
H-C(2')	7.30 (d, J = 8.6)	129.7	7.24 (d, J = 8.5)	129.7
H-C(3')	6.92 (d, J = 8.6)	115.4	6.87 (d, J = 8.5)	115.2
C(4')		155.6		155.4
H-C(5')	6.92 (d, J = 8.6)	115.4	6.87 (d, J = 8.5)	115.2
H - C(6')	7.30 (d, J = 8.6)	129.7	7.24 (d, J = 8.5)	129.7

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1** and **2**¹). At 400/100 MHz, resp., in CDCl₃; δ in ppm, *J* in Hz.

The ¹H-NMR signals of **1** at δ (H) 3.55–3.62 (*m*), 2.31–2.35 (*m*), 1.77–1.80 (*m*), 3.31–3.37 (*m*, 2 H), and 0.80 (*d*, *J*=7.0 Hz) correlated with the ¹³C-NMR signals at δ (C) 37.8 (C(7)), 33.4 (C(8)), 33.4 (C(8)), 29.9 (C(9)), and 19.8 (C(11)), respectively, in the HSQC spectrum. Furthermore, the HMBC cross-peaks H–C(7)/C(3), C(4), C(8), C(9), and C(11), H_a–C(8) and H_b–C(8)/C(7), C(9), and C(11), H_a–C(9) and H_b–C(9)/C(2), C(3), C(4), C(7), and C(8), and Me(11)/C(3), C(7), and C(8),

¹H,¹H-COSY: — HMBC: H \frown C Fig. 1. Selected 2D-NMR correlations for incargutine A (1)¹)

Fig. 2. Selected NOE correlations for incargutine A (1)

suggested the presence of a 7-methylcyclopentane unit fused with an arene ring at C(2) and C(3) in the structure of **1**. The IR spectrum revealed the presence of an OH group by the absorption at 3370 cm⁻¹, and the OH substituent at C(4') (δ (C) 155.6) was deduced from its chemical shift and the molecular formula. The specific rotation of **1** was positive; thus the structure of **1** was elucidated as (+)-4'-hydroxy-7-methylcyclopenta[*c*]biphenyl-4-carboxaldehyde with as yet unknown absolute configuration.

Incargutine B¹) (2) was obtained as a yellow oil. The molecular formula was determined as $C_{19}H_{22}O_3$ by HR-ESI-MS (m/z 321.1466 ($[M + Na]^+$, $C_{19}H_{22}NaO_3^+$). The NMR data (*Table 1*) were very similar to those of **1**, but two additional MeO signals at $\delta(H)$ 3.37 (*s*, Me(12), Me(13)) and $\delta(C)$ 53.2 (C(12), C(13)) were present instead of the CHO signals of **1**. These MeO groups were placed at C(10) ($\delta(C)$ 102.7) on the basis of their HMBC with C(10). The remaining 2D-NMR (¹H, ¹H-COSY, HSQC, HMBC, and NOESY) data were identical to those of **1**. The specific rotation of **2** was positive; thus the structure of **2** was elucidated as (+)-12,13-dimethoxy-7-methylcy-clopenta[*c*]biphenyl-4'-ol.

The antitumor activities of incargutines A (1) and B (2) against four tumor cell lines, A549, LOVO, CEM, and MDA-MB-435 (MDA), were determined by the MTT assay [7], with DOX (doxorubicin) as a positive control; the IC_{50} (µg/ml) values are listed in *Table 2*. Incargutine A (1) showed modest cytotoxicities against these four tumor cell lines with IC_{50} values in the range of 0.47-6.16 µg/ml.

	A549	LOVO	CEM	MDA
1	3.60	0.47	3.06	6.16
2	13.71	14.59	18.55	4.30
DOX	0.04	0.36	0.01	0.02

Table 2. Cytotoxicity (IC₅₀ [µg/ml]) of Compounds **1** and **2** against A549, LOVO, CEM, and MDA-MB-435 Cell Lines

This work was supported by the *Program for Changjiang Scholars and Innovative Research Team in University* (PCSIRT), the *NCET Foundation*, the *NSFC* (30725045), the *National 863 Program* (2006AA02Z338), the *China Postdoctoral Science Foundation* (20070410711), the '973' *Program of China* (2007CB507400), the *Shanghai Leading Academic Discipline Project* (B906), and in part by the *Scientific Foundation of Shanghai China* (07DZ19728, 06DZ19717, and 06DZ19005).

Experimental Part

General. TLC: $HSG-F_{254}$ silica gel plates (SiO₂, 10-40 µm; Yantai Huiyou, China). Column chromatography (CC): SiO₂ (200-300 mesh; Yantai Jiangyou, China); SiO₂ H (10-40 µm; Qingdao Marine Chemical Ltd., China). Optical rotations: Perkin-Elmer 341 polarimeter; at r.t. IR Spectra: Bruker FTIR-Vector-22 spectrometer; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker Avance¹¹-400 spectrometer; in CDCl₃ at 400 (¹H) and 100 MHz (¹³C); δ in ppm, J in Hz. ESI-MS: Varian MAT-212 mass spectrometer; in m/z. TOF-ESI-MS: Q-Tof-micro-YA019 mass spectrometer.

Plant Material. The roots of *I. arguta* were collected from Anning, Yunnan Province, P. R. China, in May 2006, and were identified by Prof. *Bao-Kang Huang*, Department of Pharmacognosy, Second Military Medical University. The voucher specimens (LTM20060514) were deposited with the Herbarium of the School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China.

Extraction and Isolation. The dried roots (24.9 kg) of *I. arguta* were chopped and percolated with 80% EtOH (4×50 l) at r.t. until the compounds of interest were exhaustively extracted. The solvent was evaporated to give a crude extract (5.2 kg). The extract was suspended in H₂O (15 l) and the suspension acidified to pH 2 with 20% H₂SO₄ soln. and filtered. The filtrate was basified to pH 10 with aq. sat. NaHCO₃ soln. and then extracted repeatedly with CHCl₃. The org. fractions were concentrated to yield the CHCl₃ extract (93 g). The CHCl₃ extract was subjected to CC (SiO₂, CH₂Cl₂/MeOH 1:0 \rightarrow 10:1): *Fractions* 1–14. *Fr.* 4 (4.5 g) was separated by CC (SiO₂, CH₂Cl₂/MeOH 1:0 \rightarrow 10:1) and further purified by prep. HPLC (MeOH/H₂O 65:35): **1** (3.2 mg) and **2** (16.0 mg).

Incargutine A (=rel-(3R)-2,3-Dihydro-7-(4-hydroxyphenyl)-3-methyl-IH-inden-4-carboxaldehyde; 1): Yellow oil. $[a]_D^{2D} = +42.7 (c = 0.15, MeOH)$. IR (KBr): 3370, 2958, 2867, 1689, 1612, 1591, 1517, 1454, 1382, 1227, 756. ¹H- and ¹³C-NMR: *Table 1*. HR-ESI-MS: 251.1074 ($[M - H]^-$, $C_{17}H_{15}O_7$; calc. 251.1072).

Incargutine B (= rel-4-[(1R)-2,3-Dihydro-7-(dimethoxymethyl)-1-methyl-1H-inden-4-yl]phenol; **2**): Yellow oil. $[a]_{D}^{2D}$ = +24.5 (c = 0.80, MeOH). IR (KBr): 3375, 2956, 2867, 1612, 1593, 1519, 1454, 1363, 1269, 756. ¹H- and ¹³C-NMR: *Table 1*. HR-ESI-MS: 321.1466 ($[M + Na]^+$, $C_{19}H_{22}NaO_3^+$; calc. 321.1467).

Cytotoxicity Assay. A cytotoxicity assay was carried out according to *Denizot* and *Lang* [7]. Each cell (conc. $1 \cdot 10^4$) was seeded in each well containing 100 µl of DMEM (*Dulbecco*'s modified *Eagle*'s medium). Subsequently, various conc. of samples were added. The cells were incubated for 48 h at 37° in an atmosphere containing 5% of CO₂. Then 10 µl of FBS-free medium (FBS = fetal bovine serum) containing 5 mg/ml of MTT (= 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium) soln. was added to the wells. After 4 h of incubation at 37°, the medium was discarded, and the formazan blue formed in the cells was dissolved by adding 100 µl of DMSO. The optical density was measured at 570 nm with a microplate reader (*Molecular Devices Co.*, Menlo Park, CA, USA).

REFERENCES

- [1] G. D. Li, Chin. Herb. Med. 1986, 17, 32.
- [2] Y. G. Luo, J. H. Yi, B. G. Li, G. L. Zhang, Lipids 2004, 39, 907.
- [3] T. F. Ji, X. Z. Feng, Chin. Tradit. Herb. Drugs 2002, 33, 967.
- [4] Z. W. Yu, H. Y. Zhu, X. S. Yang, Q. Y. Sun, X. J. Hao, China J. Chin. Mater. Med. 2005, 30, 1335.
- [5] D. Y. Zhou, X. S. Yang, B. Yang, H. Y. Zhu, X. J. Hao, Nat. Prod. Res. Dev. 2007, 19, 807.
- [6] J. J. Fu, H. Z. Jin, Y. H. Shen, W. D. Zhang, W. Z. Xu, Q. Zeng, S. K. Yan, Helv. Chim. Acta 2007, 90, 2151.
- [7] F. Denizot, R. Lang, J. Immunol. Methods 1986, 89, 271.

Received August 4, 2008